בכל החלקים לפני חיבור המעגל יש לקבל אישור מהמדריך. מעגלים חשמליים- תדריך עבודה
|
|
- Ἀζαρίας Ζάππας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 הערה: שימו לב ששגיאת המכשירים הדיגיטאליים שאיתם עובדים בניסוי משתנה בין סקאלות ותלויה גם בערכים הנמדדים לכן יש להימנע ממעבר סקאלה במהלך המדידה )למעט במד ההתנגדות בחלק ב'( ובכל מקרה לרשום בכל מדידה באיזה מכשיר ובאיזו סקאלה בוצעה המדידה על מנת שתוכלו להעריך את השגיאות נכונה. הסבר על עבודה עם פונקצית ה- ANALYZE של המולטימטר נתן למצוא בסוף התדריך. חשוב לעבור עם הפונקציה הזאת על מנת להתחשב בשגיאה הסטטיסטית, שכן הערכים שמראה המולטימטר משתנים בכל החלקים לפני חיבור המעגל יש לקבל אישור מהמדריך. בצורה אקראית עם הזמן. לפני השימוש במכשירי המדידה יש לקרוא את הנספחים א+ב בסוף מסמך זה. מטרת הניסוי מעגלים חשמליים- תדריך עבודה מטרת הניסוי היא בחינת התנהגות בסיסית של מעגלי זרם ישר )DC(. נאמת את חוק אוהם ואת נוסחת חישוב ההתנגדות שקולה של נגדים במקביל. בנוסף, נשתמש בעיקרון קשר ויטסטון לחישוב התנגדות נגד לא ידוע. רשימת ציוד 1. מקור מתח זוג מולטימטרים דיגיטליים אוסף נגדים יחד עם לוח יעודי לחיבור נגדים נגד משתנה תילי חיבור מעגל גשר וויטסטון נקודת המגע בתיל הארוך( )סרגל המוצמד לתיל עם כבל מוליך בעל קצה חשוף לקביעת.7.8 מד מתח אנלוגי קליבר חלק א' חוק אוהם. V IR אוהם חוק את נאמת זה בחלק נבצע כך לשם המתח של מדידות הנגד על הנופל והזרם הזורם דרכו. ביצוע המדידות וודאו כי ספק המתח לא מספק מתח למעגל )לחצן output במצב כבוי(. כוונו את ספק המתח ל 1V והגבילו את הזרם ל 0. A עמוד 1 מתוך 7
2 3. חברו את המעגל עפ"י המתואר בתרשים 1, בחלק זה השתמשו בנגד מספר 1. נשים לב כי בתרשים שתי אפשרויות לחיבור. לפני הפעלת המתח קראו למדריך על מנת לבדוק את החיבורים. 4. לרשותכם שני מכשירי Tektronix כאשר אחד ישמש כמד זרם והשני כמד מתח )או כמד התנגדות(. יש לכוון את הסקאלה של מד המתח ל 10V ואת סקאלת מד הזרם ל 100mA )חשוב לזכור לא לשנות את הסקאלות בין מדידות(. 5. מדדו את המתח והזרם בשני אופני החיבור. כיצד עלינו לבצע את המדידות הללו )חיבור a או b(? מדוע? 6. לאחר שבחרנו את אופן המדידה בצעו סדרת מדידות של מתחים וזרמים בתחום של.0-4V 7. מדדו את התנגדות הנגד ואת התנגדות האמפרמטר עפ"י מדידה ישירה. כמו כן, חשבו את ההתנגדות הפנימית של האמפרמטר על פי המתחים והזרמים שנמדדו בשתי צורות החיבור )שימו לב כי התנגדותו הפנימית של מכשיר המדידה משתנה במעבר סקאלה( האם ניתן להצדיק כעת את צורת החיבור? עיבוד מדגמי יש לבצע עיבוד מדגמי במעבדה על מנת לוודא שתוצאות המדידות טובות, לשם כך יש לחשב את ההתנגדות עבור כל נקודה ולוודא שכל הערכים קרובים אחד לשני. במידה ויש נקודות חורגות ניתן לחזור על המדידות בנקודות הנ"ל. V a A V b R תרשים 1: חיבור המעגל למדידת המתח והזרם. הנחיות לעיבוד תוצאות בנו גרף וחלצו את התנגדות הנגד באמצעות התאמה לינארית. השוו את הערך שהתקבל לערך שנמדד ישירות. עמוד 2 מתוך 7
3 חלק ב' התנגדות כתלות באורך הנגד בחלק זה נחקור את התנגדות הסגולית של נגד באורך משתנה ביצוע המדידות כוונו את ספק המתח ל- 1 V והגבילו את הזרם ל A. 0 חברו את המעגל המתואר בתרשים 4. החיבור של מגע אחד של התיל הינו חופשי וניתן לבחור את נקודת החיבור לאורכו. כך התיל מתפקד כנגד באורך משתנה. הפעילו את מקור המתח. עבור סדרת אורכים שונים של הנגד, מדדו את המתח ואת הזרם. מדדו את התנגדות הנגד הקבוע בעזרת מד התנגדות. מדדו את קוטר התיל בעזרת קליבר. בעזרת סדרת מדידות המתח, הזרם, ותוך שימוש בחוק אוהם, מצאו את ההתנגדות השקולה של שני הנגדים עבור כל אורך. ציירו גרף של ההתנגדות השקולה כתלות באורך הנגד. משיפוע הגרף, תוך שימוש בקוטר התיל שמדדתם, חלצו את ההתנגדות הסגולית של התיל, ושהוו אותו לערכים של חומרים אשר תמצאו מן הספרות. נסו לסווג את החומר. את נקודת החיתוך של הגרף עם הציר האנכי, השוו לגודל הרלוונטי במערכת אותו מדדתם עמוד 3 מתוך 7
4 תרשים 4: מעגל חיבורים עבור התנגדות כתלות באורך הנגד לפני סיום אנא וודאו כי אתם יודעים כיצד לחשב את שגיאות המדידה בכל מכשירי המדידה. לשם כך ראו טבלאות בחוברת היצרן שבאתר. ג' חלק גשר ויטסטון בחלק זה נמדוד את התנגדות נגד לא ידוע X תוך שימוש בעקרון גשר ויטסטון. ביצוע המדידות כוונו את ספק המתח ל- 0-0V והגבילו את הזרם ל A. 0 המעגל את חברו המתואר 3. בתרשים וניתן לבחור את נקודת החיבור לאורכו. לתיל המודד של החיבור לב, שימו הפעילו את מקור המתח ומצאו את האורך l אשר עבורו מד המתח מתאפס. חופשי כדי לחשב את השגיאה ב, l מצאו את התחום על הסרגל שבו מד המתח מראה 0V. השגיאה אם כן תהיה שגיאה של התפלגות אחידה בתוך התחום הזה. מדדו באופן ישיר את התנגדות נגד R 1 מדדו באופן ישיר את התנגדותו של נגד וחשבו את התנגדותו של נגד R. 4 R 4 ובצעו השוואה לערך שחישבתם. תרשים 3: מעגל חיבורים עבור גשר ויטסטון עמוד 4 מתוך 7
5 נספח א: תרשים ספק המתח 3 4 Te 5 Te כפתור.power חיבור ליציאת המתח )חיובי ושלילי(. לחצן, output רק לאחר לחיצה עליו תדלק נורית והמכשיר יוציא מתח.)יש ללחוץ רק לאחר אישור המעגל ע"י המדריך(. עמוד 5 מתוך 7
6 כיוון הגבלת זרם במעגל, בתחילת הניסוי יש לקבוע על 0A ולא לשנות במהלך הניסוי. כיוון המתח. כיוון עדין למתח. נספח ב: תרשים מכשיר Tektronix המשמש כמד זרם, מתח או התנגדות כפתור הדלקה\כיבוי חיבור ההדק השלילי )מחובר לאדמה( חיבור ההדק החיובי בעת מדידת זרם- כלומר כאשר המכשיר משמש כאמפרמטר חיבור ההדק החיובי בעת מדידת מתח\התנגדות- כלומר כאשר המכשיר משמש כוולטמטר\אוהם-מטר. בחירת תיפקוד מכשיר עמוד 6 מתוך 7
7 -DCV מדידת מתח ישר -DCI מדידת זרם ישר - מדידת זרם ישר Ω- מדידת התנגדות.a.b.c.d שינוי סקאלות ע"י לחיצה על החצים )למעלה\למטה( תפריט הANALYZE בתפריט זה אפשר לבחור לעשות אנליזה סטטיסטית למדידות. מאחר והערכים שאנו מודדים לא נשארים קבועים, נרצה לעשות מיצוע על פני מספר דגימות. בנוסף, נוכל להעריך גם את השגיאה הסטטיסטית. לחצו על כפתור זה עבור כל מדידה ובחרו ב.STATS )השתמשו בלחצני הF ( שם ניתן לקבוע גם את מספר הדגימות )תחת.)#SAMPELS שימו לב שמספר דגימות רב אמנם מקטין את השגיאה אך עולה לנו בזמן. בחרו במספר דגימות סביר. ועבור כל מדידה חלצו את הערך הממוצע, סטיית התקן )SD( ואת מספר הדגימות. השגיאה הכוללת תהיה שגיאת המכשיר משוכללת עם השגיאה הסטטיסטית..7 עמוד 7 מתוך 7
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
-הולכה חשמלית- הולכה חשמלית
מילות מפתח: הולכה חשמלית התנגדות, וולטמטר, אמפרמטר, נגד, דיודה, אופיין, התנגדות דינמית. הציוד הדרוש: 2 רבי מודדים דגיטלים )מולטימטרים(, פלטת רכיבים, ספק, כבלים חשמליים. מטרות הניסוי: הכרת נושא ההולכה החשמלית
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
אופיין של נורה ותיל מתכתי, תלות התנגדות באורך
אופיין של נורה ותיל מתכתי, תלות התנגדות באורך ציוד: : נורה של 2.5V, תיל מוליך בעל התנגדות של 17Ω לפחות, ראוסטט בעל התנגדות של כ 15Ω, חיישן זרם (Voltage sensor) חיישן מתח,(Current sensor) מציאת אופיין של
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
התשובות בסוף! שאלה 1:
התשובות בסוף! שאלה : בעיה באלקטרוסטטיקה: נתון כדור מוליך. חשבו את העבודה שצריך להשקיע כדי להניע יח מטען מן הנק לנק. (הנק נמצאת במרחק מהמרכז, והנק נמצאת במרחק מהמרכז). kq( ) kq ( ) לא ניתן לקבוע שאלה :
ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (
תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע
פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן
מאי 2011 קרית חינוך אורט קרית ביאליק פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן א. משך הבחינה: שעה ושלושה רבעים (105 דקות) ב. מבנה השאלון ומפתח ההערכה: בשאלון זה חמש שאלות, ומהן
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
Data Studio. AC1_Circuit_R.ds כרך : חשמל
טל': 03-5605536 פקס: www.shulan-sci.co.il 03-5660340 מעגל זרם חילופין - 1 למעגל יש רק התנגדות - R Data Studio שם קובץ הניסוי: AC1_Circuit_R.ds חוברת מס' 8 כרך : חשמל מאת: משה גלבמן טל': 03-5605536 פקס:
מבחן משווה בפיסיקה כיתה ט'
מבחן משווה בפיסיקה כיתה ט' משך המבחן 0 דקות מבנה השאלון : שאלון זה כולל 4 שאלות. עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם בהגשה לטופס המבחן. חומרי עזר:.מחשבון. נספח הנוסחאות
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.
Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
הדבעמ 2 הקיסיפ תריקח ימרוג ת ודגנתה
פיסיקה מעבדה חקירת גורמי התנגדות 1 מטרות הניסוי ניסוי מס' חקירת גורמי התנגדות 1. הכרת מכשירי מדידה חשמליים, מדידת התנגדות, מתח, זרם חשמלי.. רקע תיאורטי חקירת גורמי התנגדות של מוליך, מדידת התנגדות סגולית
תרשים 1 מבוא. I r B =
שדה מגנטי של תיל נושא זרם מבוא תרשים 1 השדה המגנטי בקרבת תיל ארוך מאד נושא זרם נתון על ידי: μ0 B = 2 π I r כאשר μ o היא פרמיאביליות הריק, I הזרם הזורם בתיל ו- r המרחק מהתיל. 111 בניסוי זה נשתמש בחיישן
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
התפלגות χ: Analyze. Non parametric test
מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06
מה נשמר קבוע? מה מחשבים?
שם הניסוי:גלוונומטר טנגנטי מדידת הרכיב האופקי של השדה המגנטי של כדור הארץ רמה א' תיאור הניסוי בניסוי זה, נעסוק בתלות של השדה המגנטי במרכז לולאה בזרם החשמלי הזורם דרכה. נמדוד את כוונו של שדה מגנטי שקול
"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי
הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת
מחוון פתרון לתרגילי חזרה באלקטרומגנטיות קיץ תשס"ז. V=ε R
מחוון פתרון לתרגילי חזרה באלקטרומגנטיות קיץ תשס"ז v שאלה א. המטען חיובי, כוון השדה בין הלוחות הוא כלפי מעלה ולכן המטען נעצר. עד כניסת החלקיק לבין לוחות הקבל הוא נע בנפילה חופשית. בין הלוחות החלקיק נע בתאוצה
חשמל: ניסויים E2+E1 הכרת מכשור מדידה
הטכניון מכון טכנולוגי לישראל הפקולטה להנדסה ביו-רפואית מעבדה בהנדסה ביו-רפואית 110433 חשמל: ניסויים E2+E3 מבוא למעגלים חשמליים מעגלים אנלוגיים מעגלים ספרתיים חשמל: ניסויים E2+E1 עמוד 1 מתוך 45 עדכון אחרון:
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
תדריך למעבדות בפיסיקה 2 להנדסה ד''ר זאב רובין, ד"ר מני שי, מר גבי גרינפלד, מר אלכס פורמן
תדריך למעבדות בפיסיקה להנדסה ד''ר זאב רובין, ד"ר מני שי, מר גבי גרינפלד, מר אלכס פורמן כרמיאל 015 ןכות םינייניעה תוארוה תוחיטב... תורפס רזע תצלמומ 3... ךיא ךורעל יוסינ ךיאו בותכל חוד הדבעמ 3... םילכ ירישכמו
קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.
קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא
דו"ח מכין M H M M בתחום Χ = B T Cλ
דו"ח מכין סוספטביליות מגנטית ותורת השדה הממוצע הסוספטביליות המגנטית נתונה ע"י השדה המגנטי המופעל על החומר. הפעלת שדה מגנטי עליו. Χ = m M H כאשר M היא המגנטיזציה של החומר ו- H היא עוצמת מכאן הסוספטביליות
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
מטרות הניסוי: רקע תאורטי: 1. חקירת התלות של עוצמת השדה המגנטי, שנוצר במרכז לולאה מעגלית נושאת זרם בשני פרמטרים: א.
מטרות הניסוי: 1. חקירת התלות של עוצמת השדה המגנטי, שנוצר במרכז לולאה מעגלית נושאת זרם בשני פרמטרים: א. ב. עוצמת הזרם הזורם בלולאה, כאשר מספר הכריכות קבוע. מספר הכריכות של הלולאה, כאשר עוצמת הזרם קבועה.
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
מבחן משווה בפיסיקה תשע"ג כיתה ט' טור א משך המבחן 90 דקות
מבחן משווה בפיסיקה תשע"ג כיתה ט' טור א משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל משימות. עליך לבצע את כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף לטופס המבחן בעת ההגשה. חומרי עזר:.מחשבון. נספח
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
א. גורדון, ר. שר, א. אברמסון
הטכניון מכון טכנולוגי לישראל הפקולטה להנדסת חשמל חוברת תרגילי כיתה ובית במקצוע "תורת המעגלים החשמליים" (445) החוברת מותאמת להרצאותיו של פרופ' לוי שכטר מהדורת מרץ 6 רשימת עדכונים: נערך ע"י אלכס נורמטוב
אלקטרומגנטיות אנליטית תירגול #2 סטטיקה
Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
מטרות הניסוי: רקע תאורטי: מורה יקר! שים לב, כל התשובות הנכונות מסומנות באדום!
מורה יקר! שים לב, כל התשובות הנכונות מסומנות באדום! מטרות הניסוי: 1. חקירת התלות של עוצמת השדה המגנטי, שנוצר במרכז לולאה מעגלית נושאת זרם בשני פרמטרים: א. ב. עוצמת הזרם הזורם בלולאה, כאשר מספר הכריכות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
שאלה 13 הזרם. נקודות) /V (1/Volt)
שאלה 13 למקור מתח בעל כא"מ ε והתנגדות פנימית לכל נורה התנגדות הזרם. L. בפתרונך הנח כי ההתנגדות r מחוברות במקביל n נורות זהות. L א. רשום ביטוי של מתח הדקי המקור V באמצעות, r ε, קבועה ואינה תלויה בעוצמת
חשמל ואלקטרוניקה. M.Sc. יורי חצרינוב תשע'' ד ערך : Composed by Khatsrinov Y. Page 1
חשמל ואלקטרוניקה קובץ תרגילים למגמת הנדסאים מכונות, שנה אי M.Sc., ערך : יורי חצרינוב תשע'' ד Composed by Khatsrinov Y. Page 1 , מטען חשמלי, 1. פרק מתח זרם, התנגדות. C -- האטום מורכב מאלקטרונים, פרוטונים
-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.
-07- בשנים קודמות למדתם את נושא הזוויות. גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. זווית נוצרת על-ידי שתי קרניים היוצאות מנקודה אחת. הנקודה נקראת קדקוד
Vcc. Bead uF 0.1uF 0.1uF
ריבוי קבלים תוצאות בדיקה מאת: קרלוס גררו. מחלקת בדיקות EMC 1. ריבוי קבלים תוצאות בדיקה: לקחנו מעגל HLXC ובדקנו את סינון המתח על רכיב. HLX מעגל הסינון בנוי משלוש קבלים של, 0.1uF כל קבל מחובר לארבע פיני
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
x = r m r f y = r i r f
דירוג קרנות נאמנות - מדד אלפא מול מדד שארפ. )נספחים( נספח א': חישוב מדד אלפא. מדד אלפא לדירוג קרנות נאמנות מוגדר באמצעות המשוואה הבאה: כאשר: (1) r i r f = + β * (r m - r f ) r i r f β - התשואה החודשית
מבוא להנדסת חשמל ואלקטרוניקה
28/0/206 דף נוחסאות - מבוא להנדסת חשמל ואלקטרוניקה 6.24 0 Coulomb electrons 9 q e.6 0 Coulomb 8 הגדרת יחידת המטען החשמלי - קולון המטעו היסודי מטען האלקטרון כיוון זרימת האלקטרונים )זרם( בפועל notation(
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
גלים א. חיבור שני גלים ב. חיבור N גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים
גלים א. חיבור שני גלים ב. חיבור גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים םילג ינש רוביח ו Y Y,הדוטילפמא התוא ילעב :לבא,,, ( ( Y Y ןוויכ ותואב םיענ
: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן ( )
: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן מעגלי קבל בנוי כך שמטען איננו יכול לעבור מצידו האחד לצידו האחר (אחרת לא היה יכול להחזיק מטען בצד אחד ומטען בצד השני) ולכן זרם קבוע לא יכול לזרום דרך הקבל.עניינינו
דף תרגילים האפקט הפוטואלקטרי
דף תרגילים שאלה מספר 1 בניסוי לחקירת משתמשים במקור אור =λ. 250 nm האלקטרודות של השפופרת שפולט אור בעל אורך גל עשויות ממתכת ניקל שפונקצית העבודה שלה. B= 5.2 ev המערכת מסודרת כך שכאשר המתח בין האלקטרודות
חשמל ומגנטיות תשע"ה תרגול 12 השראות
חשמל ומגנטיות תשע"ה תרגול 12 השראות השראות הדדית ועצמית בשבוע שעבר דיברנו על השראות בין לולאה לבין השינוי בשטף המגנטי שעובר דרכה על ידי שימוש בחוק פאראדיי ε = dφ m dt הפעם נסתכל על מקרה בו יש יותר מלולאה
אלגברה מודרנית פתרון שיעורי בית 6
אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:
מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע.
גיאומטריה מצולעים מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שappleי קדקודים שאיappleם סמוכים זה לזה. לדוגמה:בסרטוט שלפappleיכם
ZI-2300 בדיקה אורך הכבל מתבצעת על בסיס מהירות ההולכה של הכבל והאימפדנס. אם נגדיר לא נכון נקבל תוצאות לא מדויקות או לא נכונות.
ZI-2300 מודד אורך כבל הסבר/רקע כללי מודד אורך כבל ומציאת המרחק לכבל מנותק/ פגום כבל תקשורת כבל קואקס חובה להגדיר את סוג הכבל לפני הבדיקה א. ב. ג. סוג הכבל תקשורת/ DATA או קואקס / COAX V.O.P אימפדנס 15
דו"ח מסכם בניסוי: אופטיקה חלק: א' הדו"ח מוגש על ידי: דוננהירש איתי קישון איתי ת.ז. שם משפחה שם פרטי ת.ז. שם משפחה שם פרטי 1 X 02
דו"ח מסכם בניסוי: אופטיקה חלק: א' סמסטר א' תש"ס שם הבודק : תאריך הבדיקה: I שם מדריך הניסוי (שם מלא): חזי ציון הדו"ח: II תאריך ביצוע הניסוי: 01/1/000 תאריך הגשת הדו"ח: 08/01/001 הדו"ח מוגש על ידי: II I
normally open (no) normally closed (nc) depletion mode depletion and enhancement mode enhancement mode n-type p-type n-type p-type n-type p-type
33 3.4 מודל ליניארי ומעגל תמורה לטרנזיסטורי אפקט שדה ישנם שני סוגים של טרנזיסטורי אפקט השדה: א ב, (ormally מבוסס על שיטת המיחסו( oe JFT (ormally oe המבוסס על שיטת המיחסור MOFT ו- MOFT המבוסס על שיטת העשרה
שאלה 3. b a I(A) α(deg) 10 cm
שאלה 1 תרגילי חזרה במגנטיות בתוך שדה מגנטי אחיד B שרויה הצלע התחתונה (שאורכה ( L של מעגל חשמלי מלבני. המעגל החשמלי מורכב מסוללה ומסגרת מלבנית מוליכה שזורם בה זרם i. המעגל החשמלי תלוי בצד אחד של מאזניים
{ } { } { A חוקי דה-מורגן: הגדרה הסתברות מותנית P P P. נוסחת בייס ) :(Bayes P P נוסחת ההסתברות הכוללת:
A A A = = A = = = = { A B} P{ A B} P P{ B} P { } { } { A P A B = P B A } P{ B} P P P B=Ω { A} = { A B} { B} = = 434 מבוא להסתברות ח', דפי נוסחאות, עמוד מתוך 6 חוקי דה-מורגן: הגדרה הסתברות מותנית נוסחת
T 1. T 3 x T 3 בזווית, N ( ) ( ) ( ) התלוי. N mg שמאלה (כיוון
קיץ 006 f T א. כיוון שמשקל גדול יותר של m יוביל בסופו של דבר למתיחות גדולה יותר בצידה הימני, m עלינו להביט על המצב בו פועל כוח החיכוך המקס', ז"א של : m הכוחות על הגוף במנוחה (ז"א התמדה), לכן בכל ציר הכוחות
החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.
החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
מתמטיקה בדידה תרגול מס' 12
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
נאסף ונערך על ידי מוטי פרלמוטר 1
שם קורס:אלקטרוניקה מספר שאלון: 710921 מרצה:מוטי פרלמוטר משך קורס: שנתי מטרת הקורס: הקניית ידע בסיסי במושגי תורת החשמל, אלקטרוניקה תקבילית והיכרות עם שיטות, רכיבים ומעגלים תעשייתיים להפעלת ובקרת הנע. 1
חלק: א' הדו"ח מוגש על ידי: פומרנץ ישי קישון איתי ת.ז. שם משפחה שם פרטי ת.ז. שם משפחה שם פרטי 1 X 02 סמסטר ב' תשס"א שם הבודק : תאריך הבדיקה:
דו"ח מסכם בניסוי: חלק: א' מגנטיות סמסטר ב' תשס"א שם הבודק : תאריך הבדיקה: I שם מדריך הניסוי (שם מלא): אריאל ציון הדו"ח: II תאריך ביצוע הניסוי: 30/04/00 תאריך הגשת הדו"ח: 7/05/00 הדו"ח מוגש על ידי: II I
משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ
משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
גמישויות. x p Δ p x נקודתית. 1,1
גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות
מורה יקר! שים לב, התשובות הנכונות מסומנות באדום!
מורה יקר! שים לב, התשובות הנכונות מסומנות באדום! בניסוי זה תשחררו ממנוחה שני גלילים על גבי מסילה משופעת העשויה אלומיניום, גליל אחד עשוי חומר מתכתי והאחר עשוי מחומר מגנטי. לכאורה, שני הגלילים אמורים לבצע
הרצאה 7 טרנזיסטור ביפולרי BJT
הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP
מתמטיקה בדידה תרגול מס' 13
מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.
דינמיקה כוחות. N = kg m s 2 מתאפסת.
דינמיקה כאשר אנו מנתחים תנועה של גוף במושגים של מיקום, מהירות ותאוצה כפי שעשינו עד כה, אנו מדלגים על ניתוח הכוחות הפועלים על הגוף. כוחות אלו ומסתו של הגוף הם אשר קובעים את תאוצתו. על מנת לקבל קשר בין הכוחות
תרגיל אמצע הסמסטר - פתרונות
1856 1 פיסיקה כללית לתלמידי ביולוגיה 774 פיסיקה כללית : חשמל ואופטיקה לתלמידי ביולוגיה חשמל ואופטיקה 774, תשס"ו - פתרונות 1 מטענים, שדות ופטנציאלים (5) ו- am µc נגדיר d האלכסון בין הקודקודים B המרחק בין
תדריך מעבדה לפיזיקה מרץ 2015 הטכניו ן - מכון טכנולוגי ליש ר א ל היחידה ללימודים קדם אקדמיים ח י פ ה י ש ר א ל
TE C H N I O N - I S R A E L I N S T I T U TE O F T E C H N O L O G Y D E P AR T M E N T O F P R E - U N I V E R S I T Y S T U D I E S הטכניו ן - מכון טכנולוגי ליש ר א ל היחידה ללימודים קדם אקדמיים תדריך
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
PDF created with pdffactory trial version
הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח
תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:
משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 23/5/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 3/5/011 שאלון: 635860 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. שאלה מספר 1 נתון: 1. ממקום A יצאה מכונית א' וכעבור מכונית ב'. 1 שעה
אלגברה ליניארית (1) - תרגיל 6
אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,
חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית
חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית הפונציאל החשמלי בעבור כל שדה וקטורי משמר ישנו פוטנציאל סקלרי המקיים A = φ הדבר נכון גם כן בעבור השדה החשמלי וניתן לרשום E = φ (1) סימן המינוס
כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS
כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
דפי נוסחאות לחשמל 1 ג רכיבים מקובצים וחוקי קירכוף ' ' '
דפי נוסחאות לחשמל ג 365 רכיבים מקובצים וחוקי קירכוף רכיבים מקובצים/מפולגים רכיב מפולג - גדול בממדיו ביחס לאורך הגל. רכיב מקובץ - קטן בממדיו ביחס לאורך הגל.(λc/f) λ ברכיב מקובץ ניתן להגדיר מתח וזרם לרכיב.
אלגוריתמים בתורת הגרפים חלק ראשון
גירסה 1. 11.11.22 אלגוריתמים בתורת הגרפים חלק ראשון מסמך זה הינו הראשון בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת
אוניברסיטת תל אביב הפקולטה להנדסה ע"ש איבי ואלדר פליישמן
אוניברסיטת תל אביב הפקולטה להנדסה ע"ש איבי ואלדר פליישמן מספר סידורי: מספר סטודנט: בחינה בקורס: פיזיקה משך הבחינה: שלוש שעות 1 יש לענות על כל השאלות 1 לכל השאלות משקל שווה בציון הסופי, ולכל סעיף אותו משקל
Ze r = 2 h. Z n. me En = E = h
דוח מעבדה: מעבדה ג' בפיסיקה ניסוי: ספקטרומטר מדריך: דימיטרי צ'סקיס \ אדר גרינברג מגישים: דניאל קראוטגמר ת.ז. 03967906-3 יבגני אוסטרניק ת.ז. 30594306-0 מבוא בניסוי זה למדנו על ספקטרוסקופיה אטומית. למדנו
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.
בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית